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We perform a duality transformation that allows one to express the partition function of the d-dimensional
Ising model with random nearest neighbor coupling in terms of spin variables defined on the square plaquettes
of the lattice. The dual model is solved in the mean-field approximation.
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The Ising model with random coupling plays a fundamen-
tal role in the theory of disordered systems. In this field, one
of the major results is the Parisi solution of the infinite range
model where at low temperature the system becomes a spin
glass with a replica symmetry breaking [1]. However, there
is no exact solution for the model with nearest neighbor in-
teraction, and it is still unclear whereas a glassy phase is
present in three dimensions at finite temperature.

In this paper, we perform a duality transformation of the
Ising model with random nearest neighbor coupling that as-
sumes the values J,;;= = 1 with equal probability. The model
is thus defined on a dual lattice where the spin variables are
attached to the square plaquettes. The advantage is that the
nonlinear part of the dual Hamiltonian has constant coeffi-
cients instead of random ones. It is therefore possible to use
the standard mean-field approximation to estimate the
quenched free energy. However, in the dual lattice the ratio
between number of spins and number of links increases with
the dimension in contrast to what happens in the original
lattice so that the mean-field approximation becomes worse
at increasing the dimensionality. Our solution is thus optimal
in two dimensions where it gives a rather good estimate of
the ground state energy.

The partition function of the d-dimensional Ising models
on a lattice of N sites with nearest neighbor couplings J;;
which are independent identically distributed random vari-
ables, in the absence of external magnetic field, is

ZN(ﬂ:{Jij})={2} (H) exp(BJ;j0,0;), (1)
o} (i,j

where the sum runs over the spin configurations {o}, and the
product over the nearest neighbor sites (i,j). One is inter-
ested in computing the quenched free energy

f=—lim EINIHZ )
N—o

where A indicates the average of an observable A over the
distribution of the random coupling. The quenched free en-
ergy is a self-averaging quantity, i.e.,
thermodynamic limit for almost all realizations of disorder
[1]. Even in one dimension, it is difficult to find an exact
solution for f in the presence of an external constant mag-
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it is obtained in the.

netic field [2]. On the other hand, it is trivial to compute the
so-called annealed free energy

1 .
= 3
fom = Jim B
corresponding to the free energy of a system where the ran-
dom couplings are not quenched but can thermalize with a

relaxation time comparable to that of the spin variables. An
easy calculation shows that in our case

fa=— %(an +d In coshp). 4)

However, f, is a very poor approximation of the quenched
free energy, and is not able to capture the qualitative features
of the model.

In order to estimate (1), it is convenient to use the link
variable x;;= 0,0, since only terms corresponding to prod-
ucts of the variables x;; on close loops survive after summing
over the spin configurations: on every close loop of the lat-
tice Ilx;;=1, while [Ix;;= 0,0, for a path from the site a to
the site b. A moment of reflection shows that it is sufficient
to fix I1x;;=1 on the elementary square plaquettes &° to au-
tomatically fix it on all the close loops. The partition function
thus becomes

N,
1+x;
ZN(B’{Jij}):{XZ H L H ePlirij (5)

b i=1 ()

where the number of plaquettes is N,=d(d—1)N/2, we
have introduced the plaquette variable x;=1I »Xij-

For dichotomic random coupling J;;=*1 with equal
probability, the free energy of the model is invariant under
the gauge transformation x;;—J;;x;;, so that one has

1+%J,;
Zy=3 H "” =5 e ©)

{xl]} i=1 (i)

where J ;=11 #J ij is again a dichotomic random variable (the
“frustration” [3] of the plaquette 7). It is worth remarking
that (6) gives the partition function in terms of a sum over
the 29V configurations of the independent random variables

x;;= %1 with probability
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ePxij .
Pij= 3 cosh B’ @)

In the following we shall indicate the average of an observ-
able A over such a normalized weight by (A), e.g.,
(x;;)=tanhB and (%;)=tanh*B. With such a notation, the
partition function assumes the compact form

NP
ZN=2<dN‘Nv)cosh“N(ﬁ)< IT +£Ji)> : 8
i=1

Now comes the key step. We estimate the average in (8) by a
geometrical construction. Let us introduce the dual lattice [4]
as the lattice whose sites are located at the centers of each
square of the original lattice. A dual spin variable is attached
to each square plaquette and can assume only the values
;= =1 with equal probability, so that one has the identity

(+ET)= X (FJ)T702 ©)

g;==*1

Since there is a one-to-one correspondence between links on
the original and on the dual lattice, we can compute the link
average noting that

P
1+a)/2 ke(,,)(“‘ﬂk)/z
x
(o) =1

i=1
=TT Ctanb) =742, (10)
i,j
where we have introduced the dichotomic link variable
Pi= 11 &, (11)

ke (i,j)

and 2 (; j) (Igc (i, j)) is the sum (product) running over the
k=1,...,2(d—1) plaquettes that have a common link
(i,j). The last equality in (10) thus follows from the identity

x;;y=tanhB if PU¥=—1
< z]) d

Spe((1Ho)/2y _
X.. = P
i ) 1 if PY=+1.

In order to complete the duality transformation, it is conve-
nient to use the variable

B=—1lntanhB (12)

representing the inverse temperature of the dual model. Note
that it vanishes as e ~2# when the temperature 7=8""'—0.
Using (12) and inserting (10) and (9) into (8), one has

(i)
Zy=2 N[ Lsinh(28)]¥2S) eB(EJ)P JH jaresre,
o " i=

(13)

The quenched free energy (2) thus is

d - -
—Bf(B)=5[(2—d)In2+1In sinh(28) — (d = ) Bf(B)],
(14)

where the free energy of the dual model is

f(B)=— lim ~—1n55N, (15)

N — 0 p
with
2,3, ool B, PP (1RO )
P {ay (0.J)
and K is the integer given by

Kz(

)ln(J ). 17)

Since the Hamiltonian of the dual model can be defined by
the relation %szz{(_r}e*ﬁff , from (16) one sees that

H=-, P{)— Eln( 1+ G‘).

(i)

(18)

Let us stress that the nonlinear term of the Hamiltonian (18)
describes the interaction of 2d—2 spins o with a constant
coupling instead of two spins o with a quenched random
coupling as happened in the original model. The randomness
enters via the presence of a sign. In fact, the weight
exp(— BH) does not define a standard Gibbs probability
measure on the dual lattice: it defines a signed probability
measure. For instance, in two dimensions, P(di’j)zéi&j SO
that the Gibbs measure of a configuration of the dual random
Ising model differs from that of the pure Ising model only by
the presence of a sign determined by the index K related to
the correlation between frustrations of the square plaquettes
{J;} and configuration {&;}.

This is the first result of our paper. Its importance stems
from the fact that it is now possible to linearize the Hamil-
tonian (18) by introducing the magnetization

1Y
m= lim —, &,. (19)
Np— N,

Indeed, if we neglect the fluctuations, the nonlinear term of
(18) can be estimated as

2 Pfii,j):deZ(d—l)
ih
so that (16) becomes
N
Zy,=2 H JOH O Rexp(BANM? @1, (20)
{o} i=

Let us find the mean-field solution, by using an auxiliary
field V. Recalling the saddle point method one immediately
sees that in the limit N — o0,

eNBm D f d® exp[NB(C m®>~3—d @@= )],
(21)
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FIG. 1. Graphical solution of the implicit equation (23) in two

dimensions, at T=8"1=1 corresponding to 8=0.136... . The
curved line is coth(8 B®) versus ® and the straight line &= .

where the constant C,; is determined by maximizing the ar-
gument of the exponential and reads

Cy=2d(d—1)(2d—3)~732/d=D), (22)
As a consequence one can write the partition function as

£y ~max exp( —NBd®?>4~1)
®
N

P - -
<3 Tf J0r0rehcar o
& i=1

Now we can explicitly carry out the sum over the N, random
variables g;, since they are independent. Indeed, we have to
use the identity

S+ x5,
2 Ji e*0i=

o=x*1

if J,=+1

2 cosh(x)
if J,=—1

2 sinh(x)

and remark that, because of the law of large numbers, when
N,—, half of the plaquettes have J;=1 and the other half
have J,= — 1. As a consequence, since in the thermodynamic
limit —B_lln(%Np)/N » self-averages to the quenched free
energy, and N,=d(d—1)N/2, one has

o (d
- Bl(B)=d max( =
@

) In[2 sinh(23C ;0247 3)]

- Bqﬂ(d*”). (24)

The maximum is realized by the value of ®* that is the
solution of the self-consistency equation

(2d-3)C,

2 coth(2C ;8P4 3) =, (25)

In two dimensions, (25) assumes the simple form
coth(8 3®)=®. The graphical solution of this implicit

FIG. 2. Random Ising model in two dimensions: the annealed
free energy f, (dashed line) and the mean-field solution (full line)
versus temperature T= 8!, The dotted lines are the Maxwell con-
structions obtained by imposing that the free energy is a monoto-
nous nondecreasing function of 7. One thus obtains the estimates of
the ground state energy E,=—1.559 (annealed solution) and
Ey=—1.468 (mean-field solution); the numerical result of [5] is
Ey=—1.404£0.002.

equation is shown in Fig. 1. One sees that ®* should always
be larger than unity and at B—oo (infinite temperature
T=p""! limit) ®*=1. It can appear rather odd that in the
dual model the magnetization ®*=1. This stems from the
fact that the Gibbs probability measure exp(—BH) is a
signed measure because the random coupling of the original
Hamiltonian is transformed into a complex random magnetic
field in the dual Hamiltonian (18). From Fig. 1, it is also
clear that the mean-field solution does not exhibit phase tran-
sitions at finite temperature. However, there is an essential
singularity at T=0, since inserting (24) into (15) and (14)
one sees the f~exp(1/T) for T—O0.

It is important to stress that the mean-field solution does
not improve at increasing the dimensionality, since the ratio
N, /(dN) between number of plaquette spins and number of
links in the dual lattice increases as (d— 1) in contrast to the
standard Ising model where the ratio of spins over links de-
creases as d '

It is possible to explicitly solve the self-consistency equa-
tion for B—0 where (25) becomes

— 2\ 1/(2d-2)
(D*~(2d8 3) B—l/(ZdAZ). (26)

Such a relation shows that when d— one has ®*—1 for
T—0 and then for all 7’s. The high-dimension limit is there-
fore trivial. The mean-field approximation works at its best
in two dimensions. For instance, the zero temperature energy
of the mean-field solution is £y= —3d/4 which is a fair es-
timate in two dimensions where the numerical simulations
[5] give Eq=—1.404*0.002. In Fig. 2, we show the free
energy as a function of 7 in two dimensions compared with
the annealed free energy (4). One sees that entropy is nega-
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tive at low temperature, thus indicating that the solution is
unphysical. As a consequence, a better estimate of the
ground state energy is given by the maximum of f(3), fol-
lowing a standard argument of Toulouse and Vannimenus
[6], and one has E=maxgf(8)=—1.468.

In conclusion, we have obtained two main results. (1) We
have formulated the random coupling Ising model on the
dual lattice made of square plaquettes. The dual model has
signed Gibbs probability measure and magnetization larger
than unity. (2) We have applied the mean-field approximation
to solve the dual model. The approximation is sensible at low
dimension.

In our opinion, the mean-field approach on the dual lattice
is very promising at least in two and three dimensions. A
similar approach has been applied to nondisordered statisti-
cal systems with good results [7]. Our method has good heu-
ristic power and there are still many open problems in its
framework, such as finding a Ginzburg-Landau criterion or
refining the mean-field approximation in a cluster expansion
scheme. This might allow one to determine whether there
exists a phase transition at low dimension.
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